Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices

نویسندگان

  • Daniel M. Balazs
  • Dmitry N. Dirin
  • Hong-Hua Fang
  • Loredana Protesescu
  • Gert H. ten Brink
  • Bart J. Kooi
  • Maksym V. Kovalenko
  • Maria Antonietta Loi
چکیده

In the past years, halide capping became one of the most promising strategies to passivate the surface of colloidal quantum dots (CQDs) in thin films to be used for electronic and optoelectronic device fabrication. This is due to the convenient processing, strong n-type characteristics, and ambient stability of the devices. Here, we investigate the effect of three counterions (ammonium, methylammonium, and tetrabutylammonium) in iodide salts used for treating CQD thin films and shed light on the mechanism of the ligand exchange. We obtain two- and three-dimensional square-packed PbS CQD superlattices with epitaxial merging of nearest neighbor CQDs as a direct outcome of the ligand-exchange reaction and show that the order in the layer can be controlled by the nature of the counterion. Furthermore, we demonstrate that the acidity of the environment plays an important role in the substitution of the carboxylates by iodide ions at the surface of lead chalcogenide quantum dots. Tetrabutylammonium iodide shows lower reactivity compared to methylammonium and ammonium iodide due to the nonacidity of the cation, which eventually leads to higher order but also poorer carrier transport due to incomplete removal of the pristine ligands in the QD thin film. Finally, we show that single-step blade-coating and immersion in a ligand exchange solution such as the one containing methylammonium iodide can be used to fabricate well performing bottom-gate/bottom-contact PbS CQD field effect transistors with record subthreshold swing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells

Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...

متن کامل

Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...

متن کامل

Solid‐State Ligand‐Exchange Fabrication of CH3NH3PbI3 Capped PbS Quantum Dot Solar Cells

CH3NH3PbI3 capped PbS colloidal quantum dots have been successfully fabricated by solid-state ligand exchange from oleate and oleylamine capped PbS. The optimal solar cells made by layer-by-layer solution deposition give a high power conversion efficiency of 4.25% with an impressive short-circuit photocurrent density of 24.83 mA cm-2.

متن کامل

Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.

We investigate in situ the structural changes during self-assembly of PbS nanocrystals from colloidal solution into superlattices, solvent evaporation, and ligand exchange at the acetonitrile/air interface by grazing incidence small-angle X-ray scattering (GISAXS). We simulate and fit the diffraction peaks under the distorted wave Born approximation (DWBA) to determine the lattice parameters. W...

متن کامل

Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles.

We report colloidal quantum dot solar cells fabricated under ambient atmosphere with an active area of 2.9 mm(2) that exhibit 3.6% solar power conversion efficiency. The devices are based on PbS tuned via the quantum size effect to have a first excitonic peak at 950 nm. Because the formation of native oxides and sulfates on PbS leads to p-type doping and deep trap formation and because such dop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015